
JOURNAL OF MATERIALS SCIENCE 28 (1993) 1885-1900 

The effect of surface-limited microcracks 
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Two types of composite layer model were used to characterize the surface-limited microcrack 
damage: (i) a dynamic modulus model and (ii) a rule-of-mixtures model. Each model can be 
applied to either one or two microcracked surface layers for all physically meaningful values of the 
relative thickness of the layer(s) and all physically meaningful values of the microcrack damage 
severity states. The microcrack severity can be described in terms of known functions of 
microcrack size, number density and orientation. A second paper will deal with the details of 
applying the models to microcracks of a particular geometry, while a third paper deals with 
experimental tests of the models presented here. 

1. I n t r o d u c t i o n  
Microcracks decrease the effective Young's modulus 
of materials [1 7]. The decrement in Young's 
modulus is typically described in terms of the average 
microcrack size, microcrack geometry, and the num- 
ber density of microcracks for either (i) three-dimen- 
sional distributions of microcracks in a body [5-7] or 
(ii) two-dimensional distributions such as through- 
cracks in a plate [8-10]. The three-dimensional 
theories treat either randomly oriented or aligned 
microcracks [5-7], where the centroid of the crack 
surfaces are homogeneously distributed in three di- 
mensions. Thus, such theories [5-10] do not treat 
non-uniform spatial distributions of microcracks, such 
as the case of a microcrack population limited to 
a layer near the surface of a brittle specimen. 

In ceramics, surface-limited microcrack distribu- 
tions (that is, distributions of microcracks that occur 
preferentially in a layer near the specimen's surface) 
are experimentally observed in (a) machining damage 
[11-17], (b) indentation [18 23] and (c) impact dam- 
age [24-27]. For example, microcracks generated by 
machining typically appear as two arrays of semi- 
elliptical cracks with one set parallel to the grinding 
direction and the other set normal to the grinding 
direction [11]. 

In this paper, we consider microcrack-modulus re- 
lationships for microcrack damage distributed uni- 
formly within a surface layer or layers. Within the 
damaged layer, the cracks may be either randomly 
oriented or preferentially aligned, but beneath the 
surface damaged layer(s) is a region of the specimen 
that is microcrack-free. We develop expressions for 
microcrack-induced modulus changes as measured 
in uniaxial tension (for which a rule of mixtures 
(ROM) model can be appropriate, as discussed in 
Appendix A). We also develop expressions for 
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modulus changes as measured via dynamic modulus 
measurements (Appendix B). We also discuss the dif- 
ferences between the two techniques in terms of the 
sensitivity of determining microcracking-induced 
modulus changes. 

2. Layer c o m p o s i t e  m o d e l  
In this study, surface-limited microcrack distributions 
will be modelled in terms of a layered composite, in 
which a reduced-modulus microcracked outer layer is 
"bonded" to an undamaged substrate (Fig. la and b). 
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Figure 1 Schematic diagrams of (a) two- and (b) three-layer com- 
posite models showing microcracked and microcrack-free layers. 
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Long tronsverse face 

Figure 2 Schematic diagram of long transverse face of sample. 

In order to discuss a specific geometry, we shall con- 
sider bar-shaped specimens. For example, specimens 
having microcracks on both long transverse surfaces 
of a bar (Fig. 2) may be considered as a three-layer 
composite composed of reduced Young's modulus 
microcracked layers on the outer transverse surfaces 
and an undamaged layer between the damaged layers 
(Fig. lb). 

Within each microcracked layer the change in 
modulus can be expressed in terms of microcrack 
number density, orientation and geometry. For 
a three-dimensional distribution of microcracks in 
a specimen, where E is the Young's modulus of 
the microcracked state of the specimen and Eo is the 
Young's modulus of the microcrack-free state of the 
specimen, the relative change in modulus is given by 

E0 - E 2 
- fG'  Nv = fGNv (1) 

E o rc 

where f is a function of the spatial orientation of the 
microcracks [5, 7]. The microcrack geometry factor, 
G, is given by 2G'/Tz, where G ' =  (AZ>/(P>.  <A> 
and < P > are the mean microcrack area and the mean 
microcrack perimeter, respectively. Nv is the crack 
number density per unit volume of the microcracked 
body. 

Analogous to the case of a three-dimensional micro- 
cracked body, for two-dimensional microcrack distri- 
butions of through-plate cracks, Equation 1 expresses 
the modulus change in terms of the size, number 
density and spatial arrangement of microcracks (See 
Appendix B o f  Part II [28]). The form of Equa- 
tion 1 emphasizes the functional relationships for 
crack orientation, crack geometry and crack number 
density which we shall explore in this paper. 

Equation 1 is inadequate for the analysis of surface- 
limited microcrack distributions (Fig. la and b), since 
Equation 1 applies to homogeneous distributions 
of crack centroids in three-dimensional space [5, 7]. 
This paper develops a rule-of-mixtures model and 
a dynamic modulus model for surface-microcracked 
materials. Within each model, there is a hierarchy of 
geometries. There is a relative layer geometry factor 
(the relative thickness of either one or two micro- 
cracked surface layers) and a crack geometry/number 
density factor, expressed in Equation 1 as the product 
f G N  (a function of the orientation, size, shape and 
number density of the microcracks). This paper devel- 
ops the relative layer geometry expressions and corn- 
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pares the results for the ROM with dynamic models. 
Part II [28] treats details of the crack geometry/num- 
ber density factor, fGN,  in terms of application to 
some "non-standard" crack geometries. Part III [29] 
gives experimental modulus microcracking results for 
arrays of indentation-induced surface-limited micro- 
cracks in polycrystalline alumina. 

2.1. Ru le -o f -mix tu re s  model  
The overall Young's modulus of sufface-microcracked 
specimens can be modelled using the rule of mixtures 
assuming a two-layer composite having a single 
microcracked surface layer (Fig. l a), while a three- 
layer composite may be used for specimens micro.- 
cracked on two surfaces (Fig. lb). The rule-of-mixtures 
expression for /~2ROM, the overall modulus of a two- 
layer composite, is 

E2ROM : E / I ) /  + Esvs (2) 

where the subscripts E and s refer to microcrack- 
damaged layer and undamaged layer, respectively, for 
the moduli E and volume fraction v (Appendix A). 

The rule-of-mixtures expression for /~3 . . . .  the 
overall modulus of a three-layer composite, is 

/~3ROM = E/lv?l + Esvs + E/2vf2  (3) 

where the subscripts f l ,  (2 and s refer to the micro- 
crack-damaged layer 1, microcrack-damaged layer 
2 and undamaged layer for the moduli E and for the 
volume fraction v, respectively (Appendix A). 

For the three-layer composite model, the elastic 
modulus for each of the two microcrack-damaged 
layers can be expressed as [5 7] 

E~ = E~(1 - f l G , 1 N t x  ) --- E s ( l  - A1)  (4a) 

E~2 = Es(1 - fzGtzN~2)  = E~(1 - A2) (4b) 

where Ai =f~GtzN~i for i =  1, 2. Using Equations 4a 
and b,/~3~oM may be expressed as 

- (1 - f~G,1N~)V,x + (1 - Vtl - v~2) 
E~ 

+ (t - f 2  Gt2N~2)v~2 (5) 

where Ntl,  N~2 = number density of cracks in 
microcracked layer 1 and 2, respectively, N~lV~l 

= Nvl  = r/f1/Vspeci . . . .  N,~2vt2 = Nv2 =/ ' /E2/Vspeci  . . . .  
n t l =  number of cracks in microcracked layer 1 and 
n~2 = number of cracks in microcracked layer 2. 
Therefore, the general expression for the fractional 
change in Young's modulus is 

Es - /~3ROM _ _  fa GtlN,~lV~l 4- f2Gt2N~2vt2 (6) 
Es 

The general form of the ROM model for the three- 
layer model (two microcracked layers) is a simple sum 
of the contributions from microcracked layer 1 and 
from microcracked layer 2. This result, of course, 
presupposes that there is no interaction between the 
two crack populations. Lack of crack interaction 
means, in turn, that the crack number density is suffi- 
ciently dilute, but the microcrack-modulus models 
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described by Equation 1 already assume a dilute 
population of microcracks [5-7]. 

If the crack geometry (shape and size) and crack 
alignment are the same for microcracked layers E1 and 
f2, then fl = f z  = f(where equivalentfi implies equiva- 
lent crack alignment) and Gel = Gee = G p (equivalent 
crack geometry) and thus 

Es - E3ROM 
-- fGe(NelVet  + Ne2VE2) 

E~ 

= fGe(Nvl  + Nv2)=fG~Uv (7) 

where Nvl -t- Nv2 = (/"/g'l + / ~ / y z ) / V s p e e i m e n  = / / t o t a l /  

,[/ 'specimen = g v . 
For the two-layer case (one microcracked layer and 

one undamaged layer), the equation for the relative 
Young's modulus change becomes 

Es - E2ROM a 
- v t fGfN/ .  = lfG~N~=fG:Nv_ 

E~ a +  

(8) 

where a is de/d~ and thus vc = a/(a + 1). In Fig. 3 
the fractional modulus change, (Es-/~2RoM)/E~, is 
plotted as a function of a and N~ (Equation 8). 

Thus, for the ROM model (Equations 7 and 8), the 
fractional Young's modulus change induced by micro- 
cracking, ( E ~ -  E) /Es ,  can be expressed as a linear 
function of the microcrack volume number density 
Nv and the crack geometry factor G. (In order to 
obtain Equation 7, we considered the special case 
where the alignment factor f and the geometry factor 
G were identical for the two microcracked layers.) 
Equations 7 and 8 are equivalent to Equation 1, in 
which the microcracks are distributed over the entire 
specimen volume. This result implies that in the two- 
layer and three-layer composite ROM models (Equa- 
tions 7, 8, and Appendix A), non-interacting crack 
populations have the same effect on modulus decre- 
ment whether the cracks are confined within a surface 
layer(s) or whether the crack centroids are distributed 
homogeneously within the specimen. Physically, this 
result can be understood within the context of the 
ROM model itself (Appendix A). For a surface-micro- 
cracked specimen loaded in uniaxial tension, where 

the loading axis is normal to the microcracked sur- 
faces (Fig. Ala and b in Appendix A), the modulus of 
the specimen will be unaffected whether the micro- 
cracks remain constrained to the microcracked sur- 
face layer or whether the microcracks are allowed to 
"float" in directions parallel to the crack faces and 
take on positions where the crack centroids are (on 
average) homogeneously distributed throughout the 
volume of the specimen. 

We shall now express the fractional changes in 
Young's modulus in the three-layer (Equation 6) and 
two-layer (Equation 8) ROM models in terms of the 
thickness of microcrack-damaged layers. This will 
allow us to more directly compare this section's ROM 
results with the dynamic modulus expressions that 
will be developed in section 2.2. For both the ROM 
and dynamic modulus expressions, we express the 
results in terms of a relative geometry (thickness) of 
microcracked layer(s) and in terms of crack damage 
parameters (such as the crack orientation function f, 
the crack geometry function G and the crack number 
density). Therefore, we can plot the relative modulus 
changes in terms of layer geometry and microcrack 
parameters, as shown schematically in Fig. 4a and b, 
respectively. 
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Figure3 Relationship between crack number density N, relative 
damage-layer thickness a, and fractional modulus change for a two- 
layer composite based on the rule-of-mixtures model. 

Figure 4 Schema for representing the relative modulus changes for 
(a) two-layer composite model and (b) three-layer composite model 
in terms of layer geometry and microcrack parameters. 

1 8 8 7  



If we label layer thicknesses as 

dE1 = thickness of microcracked layer 1 

dr2 = thickness of microcracked layer 2 

ds = thickness of the undamaged layer 

and the relative layer thickness as R1 =dtl/ds, 
Rz = dt2/ds, then using Equation 6, /~3,o~ can be 
expressed as 

Es - -  /~3ROM flGtlNtlR1 + f2Gt2Nt2R2 
Es R 1 + R 2 + 1 

R1A1 + R2A2 
= (9a) 

RI + R2 + 1 

- t L dt2 A2 + 1  (9b) 

(E~ -/~3Ro~)/Es thus can be written as a function of 
four variables R~, A~, Rz and A 2 (Equation 9a) where 
A1 =f~ G/1Nt~ and A2 =F2G/2N/2. In order to 
plot the fractional modulus change function 
( E s -  F3,o~)/Es in a three-dimensional coordinate 
system (Fig. 5a) we use Equation 9b, which expresses 
the fractional modulus change as a function of the 

dimensionless variables A1/A2 and d/1/dr2 which 
from the definitions of R 1 and R2,  dtx/&2 is equivalent 
to RI/R2. 

If the crack geometry (shape and size) and crack 
alignment are the same for layers t and 2, then 

Es - -  /~3~oM G NtxR1 + NtzR2 (10) 
Es - f t ~ St-R2 + 1 

For the two-layer case (one microcracked layer and 
one undamaged layer), the equation for the relative 
Young's modulus change becomes 

Es - -  E2ROM a a 
- l fGeNt -  A (11) 

Es a +  a + l  

where a = dt/ds and A =fGtNt (Fig. 5b). 

2 . 2 .  D y n a m i c  b e a m  v i b r a t i o n  m o d e l  

2.2.1. Two-layer dynamic beam vibration 
model 

The overall Young's modulus of surface-microcracked 
specimens can be predicted using a dynamic beam 
vibration theory assuming a two-layer composite for 
specimens microcracked on a single surface (Fig. 1 
and Appendix B): 

0 8 ' ~ ,5 "'5 
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Figure5 (a) Relation between d'i1/d/z, A1/A 2 (A1/A2 
=flGtIN/1/flG/1Nel), and the fractional Young's modulus 

change for a three-layer composite based on rule-of-mixtures model 
(when A2 = 0.1, &z = 0.1 • bar thickness). (b) Relationship between 
a, A (A =fG/N~) and the Tractional Young's modulus change for 
a two-layer composite based on rule-of-mixtures model. 

E2oy,~ Et It I~ = ~ "  + E s -  (12) 
I~ + Is It + Is 

In Appendix B we show that the second moments of 
inertia Is and It are given by 

Is = ( ~ - d Z d  + dsd2)w (13a) 

L = ( f+dZed+dtd2)w (13b) 

where w = width of the specimen, dt = thickness of 
microcracked layer and ds = thickness of undamaged 
layer. The neutral plane (Figs 1 and B1) is given 
(Equation B9, Appendix B) by 

Esd~ - e t a ~  
d = (14) 

2Esds + 2Etdt 
where Et = modulus of the microcracked layer and 

1 . 0 0  . . ~ . '  u . z  O. .4 0 . 5  
A 

17 

Figure6 Relationship between a, A (A =fGrNl) and fractional 
Young's modulus change for a two-layer composite based on dy- 
namic beam vibration model. 
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Es = undamaged layer modulus. Using Equation 1, 
the modulus of the microcracked layer, E/, can be 
expressed in terms of the modulus of the undamaged 
layer Es, the crack alignment function f, geometry 
factor G~, and the number density of cracks in the 
microcracked layer, N/, such that 

Et = E~(1 -- fG/N,~)  (15) 

Using Equations 12-15, the change in dynamic 
modulus due to microcracking in a two-layer com- 
posite (one microcrack-damaged layer and one un- 
damaged layer) can be expressed as 

E~ - /~2o~ _ A I ~  
E~ I/ + Is 

2 2 2 3d 2) 2 E ~ G d s d  4 2 5 A[Es ds d~(4d /+ 6dsd/ + + + E~de] 

and Nv = volume cracknumber  density, based on the 
volume of the entire specimen. To simplify our nota- 
tion, we define 13 = 1 / ( 1 -  C2). Then Equation 19 
becomes 

13ds -- d/ 
d - ( 2 1 )  

2 

Inserting Equation 21 into Equation 13a and using 
the relation a = d//d~ gives 

d314 - 613 + 3132 + 6 ( 1 -  13)a + 3a2]w 
I s 

12 

(22) 

- Esd~2 5 + 2EsE/d4sdz + Efltsdz(4dsa 2 2 + 6d~d~ + 3d/2) q_ Es2ds2dz(4dz2 + 6dsd~ + 3d 2) + 2EsEzdsd~ + E~dz2 5 

(16) 

Fig. 6 is a plot of Equation 16 in terms of a (where 
a = d/ /ds)  and the microcrack damage parameter A. 
Equation 16 is quite cumbersome and hence difficult 
to directly compare with the ROM results. Other than 
in a plot such as Fig. 6, the cumbersome nature of 
Equation 16 also make it difficult to readily observe 
the dependence of the relative modulus change upon 
the various parameters of moduli, layer thickness, etc. 
We shall thus derive a simplified (but approximate) 
form of Equation 16 which is more tractable to use for 
comparison with the ROM results and to display the 
functional dependencies on layer geometry and micro- 
cracking parameters. 

Using Equation 15 and the relation ads = dr, Equa- 
tion 14 may be rewritten as 

D Y N  

When C 2 is small, 13 = 1 / ( 1 -  C2).~; 1 q - C  2 and 
C~ ~ 0. Then Equation 22 becomes 

d3(1 + 3a 2 - 6 a C z ) w  
I s = 

12 

Inserting Equation 21 into Equation 13a gives 

d3(a 3 + 3a + 6 a C z ) w  
I/ = 

12 

Combining terms in Equations 23 and 24 yields 

d~(1 + a)3w 
Is + It - -  

12 

(23) 

(24) 

(25) 

Inserting Equations 16 and 23-25 into Equation 12 
gives 

Es[(1 + a)  3 - -  ( a  3 q- a 2 q- 3a + 3 ) C  2 - -  6(1 + a)C 2] 
(1 + a) 3 (26) 

d~E1 - (1 - A)a 2] 
d = 

211 + (1 - A)a] 

where A = f G t N e .  Inserting Equation 15 into Equa- 
tion 14 gives 

d R - d y + d/C1 
d = (17) 

2(ds + d~ - Ca) 

where 

C 1 = d l fG  / N /  = f G / N A ,  (18) 

N A = number density of cracks per unit area, d / +  ds 
= t = thickness of two-layer composite model and 

d2s - d 2 = (ds + d/) (d s - d~) = tds - td,.. Thus Equa- 
tion 17 becomes 

where 

C2 

ds d/ 
d - (19) 

2(1 - C2) 2 

C1 d / f  G / N f  f G z N A  

t t t 
- f G i N v  

(20) 

Neglecting terms of order C 2 gives 

Es - /~2DyN a 2 + 3 a ( a 2 q  - 3) 
Es - (a + 1) 2 v / A  - (a  q- 1) ~ A 

(27) 

where a = d//ds and a/(a  + 1) = d/ / t  = v/. As a com- 
parison with the ROM results (Equation 11) for the 
two-layer composite system, we can write 

Es - / ~ 2 D ~  a 2 + 3 Es - //2RoM 

Es (a -}- ])2 Es 

E8 - -  /~2ROM 
= g(a) (28) 

Es 

where 9(a) = (a 2 + 3)/(a + 1) 2 is a polynomial func- 
tion of the relative layer geometry and a = d~/d~ 
(Fig. la shows dt and d~). As a --* 0 the damage layer 
thickness d~ --* 0, which in turn means that C2 ap- 
proaches zero. When C2 --* 0, /~2D,~, approaches the 
undamaged modulus Es. For a finite layer thickness 
d,~ and a finite specimen thickness t, C2 --* 0 implies 
that the microcrack damage ( f G ~ N f )  goes to zero, 
which is consistent with E2D~N --* E~ (Equation 2d). 
When a approaches infinity, E2D~N becomes 
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Figure 7 The difference ~2 between the two-layer dynamic frac- 
tional modulus change (Equation 16) and its approximation 
(Equation 27) in terms of a and A. ,. 

Es(1- fG/Nv) .  Physically, as a becomes large, the 
layer thickness approaches the specimen thickness. As 
a approaches infinity, the layer thickness and the 
specimen thickness become the same, and thus 
the expression for E2D,~N becomes the same as 
Equation 1 for homogeneously microcracked materials 
(Appendix D). 

The approximations given by Equations 27 and 28 
(where Equations 27 and 28 are equivalent) give the 
fractional Young's modulus change due to surface- 
limited microcracking for a two-layer composite con- 
sisting of a microcracked layer and an undamaged 
layer (Fig. la). Equation 27 portrays the fractional 
Young's modulus change as a relatively simple func- 
tion of a (the relative layer thickness) and A (the 
microcrack damage level), while Equation 28 allows 
one to compare the ROM and dynamic modulus 
models for the fractional Young's modulus change. 
The difference between the two-layer fractional 
modulus expression (Equation 16) and its approxima- 
tion (Equation 27) is plotted a s  ~2 on the vertical axis 
of Fig. 7. If the values of the relative layer thickness 
a and microcrack damage A are allowed to range 
independently over the interval [0, 0.1], then the max- 
imum error due to the approximation (Equation 27) is 
about 2%. If a and A range independently over the 
intervals [0,0.2] and [0,0.3], then the maximum 
errors due to the approximation are about 7 and 
14%, respectively. For values near the a or A axes 
(Figs 6 and 7), the errors tend to be low. For example 
for a = 0.1 and A = 0.3, the approximation error is 
about 5.5%, while at a -- 0.3 and A = 0.1 the approx- 
imation error is about 6.3%. Note that for the ROM 
model, a figure similar to Fig. 7 is not needed, since 
the two-layer ROM fractional Young's modulus ex- 
pression (Equation 11) is relatively straightforward 
and no further simplifying approximations are needed 
(as is the case for the dynamic modulus model) to 
make the equation manageable. 

2.2.2. Three-layer dynam& beam vibration 
model 

Equation 28 refers to a specimen microcracked on 
a single transverse face. For specimens microcracked 
on both long transverse surfaces (Fig. lb), the overall 
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Young's modulus of three-layer composites, /~3 . . . .  
can be expressed in terms of dynamic beam vibration 
theory (Appendix B) such that 

Ill  I~ 
/~3DYN ~ E~I + Es I!1 + Is + L:2 1:1 + Is + I~2 

It. 2 
+ E:2 I~1 + Is + I t2 (29) 

where 

I,~1 = ((ds-d)Zd~l + ( d s - d ) d Z 1 + d ~ ) w  (30) 

Is = ( ~ - d Z d + d s d 2 ) w  (31) 

If2 = (d3 ' :+dZ2d+ d:2d2)w (32) 

ElldZt + 2E~ld~lds + Esd 2 - E:2dZ2 
d = (33) 

2E~xd~x + 2Esd~ + 2E~2dt2 

in which d = distance between neutral plane and the 
interface between microcracked layer 2 and un- 
damaged layer (Figs 1 and B2), w = width of the 
specimen, E/1, E/2 = modulus of microcracked layer 
1 and 2, respectively, and d/1,d/2 = thickness of 
microcracked layer 1 and 2, respectively. 

As was the case for the three-layer ROM model, 
E~x and E~2, the moduli of microcracked layers 1 and 
2, respectively, for the three-layer dynamic model can 
be expressed in terms of E~, the modulus of the un- 
damaged layer and the crack damage parameters 
A~ and A 2 (Equations 4a and b). By analogy with the 
two-layer dynamic model (Equation 16), the fractional 
modulus for the three-layer dynamic model can be 
obtained by substituting Equations 30-33 and Equa- 
tions 4a and b into Equation 29. The fractional change 
in Young's modulus, (Es--E3DyN)/Es, i n c r e a s e s  

monotonically as a function of the relative damage 
A1/A2 increases and as d:l/dl2 increases (Fig. 8). The 
explicit equation for (E~ - E3o~N)/E~ is extremely un- 
wieldy and will not be reproduced here (although the 

Z 

^11^2 d~llo, 2 

Figure8 Relationship between d/1/d/2, AI/A2 and the fractional 
Young's modulus change for three-layer composite based on 
dynamic beam vibration model (when A 2 =0.1, d/2 =0.1 •  
thickness). 



reader can readily produce it, if desired, via the substi- 
tutions listed above). However, as was the case for the 
two-layer dynamic model described by Equation 16, 
we can obtain an approximation for (E~ - E3D,~)/E~ 
which allows us to compare the three-layer dynamic 
model with the three-layer ROM results, which also 
gives simplified functional dependencies of the three- 
layer dynamic model on layer geometry and micro- 
cracking parameters. 

We shall now derive an expression for small values 
of A1/) 1 and A2/) 2 analogous to the small-Av expres- 
sion obtained for the two-layer dynamic model (Equa- 
tion 27). We begin by inserting into Equation 33 the 
expressions for E~ and Ee2 from Equations 4a and 
b to give 

(1 - Cbl)d~l + (1 -- 2Cb~)d~ - (1 - Cb2)dz2 
d = 

where 

20 - C)  

(34) 

t = d /1  + ds + d~2 

f l G / 1 N f ~ d t l  A l d / i  
C b  I - -  _ _  _ _  

t t 

f2G/2N/2d,(2 A2dz2 
Cb2 --  

t t 

- -  A 1 / )  1 

- -  A 2 / ) 2  

C c = C b l  Jr- Cb2 = A1/)  i + A 2 u  2 

For small Cr 1/(1 - C~) ~ 1 + C~. Dropping second- 
order terms in Co gives 

d = [1 + R1 -- R2 -- Cbl(1 + R2) 

+ Cb2(l + R~)]d~/2 = Cd~ (35) 

where R1 = d/1/d~, R2 = d/2/d~ and 

C = [1 + R1 - R2 -- Cbl(1 + R2) 

+ Cu2(1 + R1)]/2 (36) 

Thus the moments of inertia I/ i ,  I~ and I/2 can be 
expressed in terms of R1, R2, ds and C: 

I/1 = w d ~ (  R3 + ( 1 - C ) R  2 + ( 1 - 2 C  + C2)R1~ 
\ 3  / 

(37) 

I~ = wd~(~  - c + c ~) (38) 

.~/R~ c2 ) I/2 = wa~ ~ + CR 2 + R2 (39) 

If both Cbl and Cb2 are small, then 
C21 = C22 = Cbi Cb2 ~ 0 and thus 

C 2 ~ (1 + R1 - R2)[1 + R1 - R2 -- 2Cbl(l + R2) 

+ 2Cb2(1 + R1) /4 ]  (40) 

After a bit of algebra, one obtains 

where R1 = d/1/d~, R 2 = d/2/d s. Thus the fractional 
decrease in Young's modulus for the three-layer dy- 
namic modulus model can be written as 

Es -  DYN 

Es 
-- g l (R1 ,  R2) f IG/1N/1  

+ g2(R1, R2)f2G/2N~2 

= [ / I ( R 1 , R ~ ) &  + g 2 ( R 1 , R 2 ) A 2  (41c) 

where [/I(R1, R2) and g2(R1, R2) are the functions 
of relative layer geometry given in Equation 41b. If 
the damage layer thicknesses are equal, that is if 
d~l = d~2 and thus R1 = R2 = a (Equation 36), then 
g l (R1 ,  R2) = g2(R1, R2) = g(a) such that Equation 
41b becomes 

E~-/~3m,~ a(4a 2 + 6a + 3) 
- ( A 1  + A2) 

E~ (2a + 1) 3 

E s --  E3ROM 
= [/(a) (42) 

E~ 

where g(a) = (4a 2 + 6a + 3)/(2a + 1) 2 and the frac- 
tional modulus change for the ROM model is given by 
Equation 10. Thus, for the three-layer dynamic 
modulus model, if d/1 = d/2 then the fractional dy- 
namic modulus change may be written as the product 
of a layer geometry factor [/(a) and the fractional 
ROM three-layer modulus change, by analogy with 
the two-layer expressions (Equation 28). However, in 
the general case that d~l is not equal to d/2, the layer 
geometry polynomials do not decouple, and the frac- 
tional changes in modulus cannot be expressed in 
terms of a simple multiple of ( E ~ -  E3~o~)/E ~. The 
E3OYN values at various limits are given in Table 1. 

Equations 4tc and 42 (which are equivalent expres- 
sions) give approximations for the fractional Young's 
modulus change due to surface-limited microcracking 
for a three-layer composite consisting of two micro- 
cracked surface layers and an intervening undamaged 
layer (Fig. I b). In addition to the comparison between 
the three-layer ROM model and dynamic modulus 
model given in Equation 42, Equation 41c expresses 
(E~ - E3~,,~)/E~ in terms of relative layer geometry 
functions, gl and [/2, and the microcrack damage 
parameters A 1 and A2, As discussed above, the "full 
form" expression for (E~- /TaD~)/E~may be ob- 
tained by substituting Equations 4a, 4b and 30 33 
into Equation 29 (which gives a three-layer analogue 
of the two-layer model written explicitly as Equa- 
tion 16). The difference between the 'full form" expres- 
sion and its approximation (Equation 41c) is plotted 
as ~3 on the vertical axis of Fig. 9. For the purpose of 
calculation we put A2 at 0.1 and d/2 at 0.1t, where 
t represents the thickness of the three-layer composite. 
As the values of the parameters d/1/d/2 and A1/A2 
range independently over the interval [0, 1], the max- 

E$ - -  /~3DYN 

Es 

[R~ + 3(R2 + 1)2]Cb, + [R2 z + 3(R1 + 1)2]Cb2 

(R1 + R2 + 1) 2 

RI[R~ + 3(R2 + 1)23fiGf1N,1 + R2[R~ + 3(R1 + 1)23f26~2N,~ 

(R1 + R2 + 1) 3 

(41 a) 

(41b) 
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T A B L E  I E3DVN values at various limiting values of the relative layer thicknesses R 1 and R 2 

Conditions on R~, R 2 E3DYN 

R1 --+0, R2- -+0  
R1 --* 0 

R2 --+ 0 

R1 ~ 0, R2-+ zC 

R 1 --~ o o , R  2 --+ 0 

R 1 ~: oo, R2 ----~ ~ 

Es 
E~[1 - RE(R22 + 3)fzG<zN<2/(R2 + 1)33 
the same as two-layer case (Equation 27) 

E~[1 -- R, (R  2 + 3)flG<IN<a/(R, + 1) 3] 
the same as two-layer case (Equation 27) 

E~(1 - f2G<zNr2) 
the same as the case of homogeneously distributed cracks throughout  the body 
(Equation 1) 

Ed l  - fa G< I N/z) 
the same as the case of homogeneously distributed cracks throughout  the body 
(Equation 1) 

E~{1 - [X(f~G<,N<, - f2G~2N/2) + f2G/zN,2]} 
where X = 4[d<l/(d<l + d<2)] 3 - 6[d<l/(d<l + dr2)] 2 + 3dzl/(d/1 + d<2) 
(see Appendix D) 

imum error due to approximation (Equation 41c) is 
slightly less than 2%. As d<l/d<2 and A1/A2 range 
independently over the intervals [0, 2] and [0, 3] then 
the maximum errors due to approximation are 3 and 
10%, respectively. If d<l/dF2 and A1/A2 are allowed to 
independently take on any value in the interval [0, 5], 
then the maximum error due to approximation is 
about 25%. 

As in the case of the two-layer ROM model, a figure 
similar to Fig. 9 is not needed since the three-layer 
ROM fractional Young's modulus expression (Equa- 
tion 6) can already be expressed straightforwardly in 
terms of the relative layer geometry parameters 
R1 and R2 and the microcrack damage parameters 
A1 and A2. 

3. Comparison of ROM and dynamic 
modulus models 

When the layer thickness d< approaches zero for 
a two-layer composite (a --+ 0), the ratio of fractional 
Young's modulus change (dynamic beam vibration 
theory, Equation 27) to fractional Young's modulus 

1.0 

ALIA2 ~ 1.0 
d~11d~z 

Figure9 The difference @3 between the three-layer dynamic 
modulus  (Equation 29) and its approximation (Equation 41c) in 

terms of dr1/dr2 and A1/A 2. 
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change (rule of mixtures, Equation 11) approaches 
3 (Appendix C). When layer thickness d< approaches 
the bar thickness for a two-layer composite (a ~ oo), 
the ratio ~ 2  of fractional Young's modulus change 
(dynamic beam vibration theory, Equation 27) to frac- 
tional Young's modulus change (rule of mixtures, 
Equation 11) approaches unity (see Appendix C and 
Fig. 10a). 

For the three-layer composite model, when the 
layer thicknesses d<l and d<2 both approach zero (that 
is, for R 1 and R 2 ~ 0) the ratio ~ 3  of fractional 
modulus changes for the dynamic model (Equa- 
tion 41b) and the ROM model (Equation 10) ap- 
proaches 3 (see Appendix C and Fig. 10b). 

For both the two-layer and the three-layer com- 
posites, note that the measured moduli themselves do 
not differ by a factor of 3; it is only the microcrack- 
induced modulus changes (that is, the relative sensitiv- 
ity to microcrack damage) that differ by a factor of 
3 between the ROM and dynamic modulus models 
(Fig. 9a and b). Physically, one would expect the 
dynamic modulus technique to be more sensitive 
to surface-limited microcracks, since the maximum 
absolute values of strain during a dynamic modulus 
measurement occur at the specimen's surface (Appen- 
dix B), while under uniaxial tension (which is appro- 
priate for the ROM model, as outlined in Appendix A) 
the strain is uniform throughout the specimen. Also, 
the factor of 3 difference in "sensitivity" applies to very 
thin surface damage layers, and as the volume fraction 
of the microcracked layer decreases (for a fixed micro- 
crack damage level) the microcrack-induced modulus 
change decreases. Thus, in practice the approach to 
the asymptotic factor of 3 for ~ 2  and ~3 in Fig. 10a 
and b, respectively, would depend on the lower experi- 
mental threshold for measuring modulus changes. The 
smaller the microcrack-induced modulus changes that 
could be experimentally determined, the closer one 
could approach to ~2 or ~3 values of 3. 

4. Summary and conclusions 
Dynamic modulus and rule of mixtures microcrack- 
ing-modulus models were presented, based on the 



d~ I/~ 

Figure 10 (a) Relationship between a, A and the ratio ~2 of frac- 
tional Young's modulus change (dynamic) to fractional Young's 
modulus change (ROM) for two-layer composite. (b) Relationship 
between d/l/ds, A1 + A2 and the ratio -~3 of fractional Young's 
modulus change (dynamic) to fractional Young's modulus change 
(ROM) for three-layer composite (when d/1 = d/2, A 1  - A 2 ) -  

concept that a specimen containing a surface-limited 
population of microcracks could be viewed as a com- 
posite, with the microcrack-damaged regions as layers 
of reduced modulus ideally bonded to an undamaged 
layer. 

In general, fractional modulus changes can thus be 
expressed in terms of a relative layer geometry and the 
crack damage parameter A which involves microcrack 
geometry, orientation and crack number density (as 
shown schematically in Fig. 4). 

The fractional modulus change for the ROM 
model was given by Equations 8 and 11 in terms of 
a two-layer composite (one microcracked layer and 
one microcrack-free layer) and by Equations 6 and 
9 for a three-layer composite (two microcracked sur- 
face layers that sandwich an intermediate microcrack- 

free layer). Since the fractional modulus changes for 
the dynamic modulus model are somewhat unwieldy 
(see Equation 16 for the two-layer case), approxima- 
tions for the two-layer case (Equation 27) and the 
three-layer case (Equation 41c) were derived. 

These simplified, approximate forms (Equations 27 
and 41c) straightforwardly display the dependence of 
the fractional modulus change upon the relative 
geometry (thickness) of the microcracked surface 
layers and upon the crack damage parameter A. The 
errors due to approximation were then specified as 
a function of the layer geometry and microcrack para- 
meters, where in general it is shown that the approx- 
imations are useful in the small aA regime. 

For a fixed level of microcrack damage severity and 
f o r a  fixed microcracked surface layer depth, the dy- 
namic modulus shows a greater sensitivity to the frac- 
tional modulus change than does the ROM model 
(Fig. 10a and b). This relative sensitivity, defined as 
-~2 and N3 for the two-layer and three-layer com- 
posite models, respectively (section 3), depends on the 
relative layer thickness. For thick layers ~2 and 
N3 approach unity, while for vanishingly thin layers 
N2 and ~3 each approach 3 (Appendices C and D). 
These sensitivity differences are likely to be related to 
the uniaxial loading assumed by the ROM model 
(Appendix A) and to the beam vibration assumed by 
the dynamic modulus model used in this paper 
(Appendix B). For uniaxial loading the strains are 
uniform through the specimen, while in beam vibra- 
tion the maximal strains occur near the specimen's 
surfaces. Physically, the greater sensitivity to micro- 
cracking-induced modulus changes occurs for the 
dynamic modulus case in which the greatest strains 
occur at the specimen surface, where the microcracked 
layers are located. 

Except for the approximate forms (Equations 27 
and 41c), each of the fractional modulus change ex- 
pressions developed in this paper applies to an arbit- 
rary relative layer thickness (for either one or two 
microcracked layers) and to an arbitrary microcrack 
damage state, as long as the damage can be expressed 
in terms of Equation 1. In the models presented here, 
the undamaged state of each of the specimen layers 
had the same modulus E~ (Equations 4a, 4b and 15), as 
is appropriate for a polycrystalline specimen in which 
surface microcrack populations are induced. How- 
ever, the models presented in this paper could easily be 
extended to a microcracked laminate in which the 
layers are composed of dissimilar materials by assum- 
ing different values of microcrack-free moduli for each 
of the specimen's layers. 

Part II [28] discusses various microcracking 
modulus theories that may be expressed in terms of 
Equation 1. In addition, Part II considers some crack 
geometries not normally considered in microcracking- 
modulus theories, including indentation cracks which 
have a ligament (plastically deformed zone) joining 
the adjacent faces of the indentation cracks [28]. 
Part III [29] compares the results of the models de- 
veloped in Parts I and II with experimental results 
obtained on indentation crack fields induced in 
a series of polycrystalline alumina specimens. 
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Appendix A: A rule-of-mixtures model 
for two-layer and three-layer composite 
models of surface-microcracked 
specimens 
This appendix reviews a typical ROM model for the 
overall elastic modulus of a layered composite body 
[30]. Equations A6 and A9, which are the principal 
results of this appendix, are the starting points for the 
development of our ROM-modulus decrement model 
for the two-layer and three-layer cases, respectively. 
(Equations A6 and A9 correspond to Equations 2 and 
3, respectively, in section 2.1). The purpose of this 
appendix is to highlight the assumptions involved in 
ROM models and thereby point out possible limita- 
tions and applications of such models. 

For a two-layer composite (Fig. Ala) loaded in 
uniaxial tension, the relative value of the strains in the 
composite are [30] 

#layer = #undamaged = e . . . . .  11 (A1) 

where #layer = strain in microcracked layer, 
#undamaged = strain in undamaged layer and 
e ... . .  . = overall strain. The stresses in the micro- 
cracked layer ((it) and the undamaged layer ((is), re- 
spectively, are given by 

(it = Ele i  (A2a) 

(is = Eses (A2b) 

For a microcracked layer of cross-sectional area 
At and an undamaged layer of cross-sectional area As, 
the load (force) P / i n  the microcracked layer and the 
load Ps in the undamaged layer are given by 

P~ = (i~Ai = E / e l A /  (A3a) 

Ps = (isAs = EsesAs (A3b) 

If P ... . .  l l = P / + P s  and A .... .  u = A : + A s  then 
P . . . .  a l l  = ( i o v e r a l l A o v e r a l l  = (I/A/-[- (isAs, such that 

( I IAi  (isAs 
( i ove ra l l  - -  + - -  ( i //)f -~- ( i s V s  

A o v e r a l l  A o v e r a l l  

(A4) 

where vr is the volume fraction of the microcracked 
layer and vs is the volume fraction of the undamaged 
layer. Differentiation of Equation A4 with respect to 
strain results in [30] 

813" ... . .  i1 /d(iE~ ( d ( i s )  
de - t ~ ) v f  + \ de /vs (a5) 

Ifd(i / /de and d(is/de are linear then/~2 . . . .  the effect- 
ive overall modulus of the two-layer composite, is 

E2ROM = Efv l  + Esvs (A6) 

For a three-layer composite (Fig. Alb), the strain in 
microcracked layer 1 = strain in microcracked layer 
2 = strain in undamaged layer = overall strain such 
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Figure A1 Schematic diagram of uniaxial tensile loading for (a) two-layer composite and (b) three-layer composite models. 
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that 

elayer 1 = elayer 2 ~--- eundamaged = e ..... u (A7) 

A procedure similar to that used for Equations A1 A5 
(the two-layer composite case) yields the following 
three-layer expression [30]: 

dr~ . . . . .  1 1  ( dcul"~ (d~s ' ]  (dcy/2)  
de \ de Jr /1 + \ d e  /Vs + \ de v,2 

(A8) 

where subscripts 1 and 2 refer to microcracked layers 
1 and 2, respectively. If dcyL1/de, dc;r2/de and dos/de 
are linear then 

J~3ROM = E/lO~I + Esvs + E/ZFE2 (A9) 

If the stress-strain behaviour for the non-micro- 
cracked ceramic is linear (which is typically true, 
except at very high temperatures), then dc&/de should 
be linear, since it refers to the non-microcracked 
stress-strain behaviour. A key assumption for the 
ROM model is then the linearity of do//de,  which 
refers to the stress-strain behaviour of the micro- 
cracked layer(s). However, a limited non-linearity of 
the elastic modulus for some ceramics under thermal 
shock conditions has been recently proposed by Swain 
[31]. 

Appendix B: Layer composite model 
approach for Young's modulus change 
using dynamic beam vibration theory 
The free, undamped vibration of a monolithic bar can 
be described approximately by the Bernoulli Euler 
beam equation [32, 33] 

E1 ~4W(x't)~x 4 + ( A P )  ~2W(x't)at 2 - 0  (B1) 

where E = Young's modulus, I = second moment of 
inertia of the cross-section of the bar with respect to 
the neutral axis, W = transverse deflection of the bar, 
which is a function of position along longitudinal axis 
x and time t, A = cross-sectional area of the bar, 
9 = density of the bar and g = acceleration due to 
gravity. Assuming perfect interracial bonding between 
the microcracked layer and the undamaged layer, for 
a single microcracked layer (Fig. B1) Equation BI 
becomes [32] 

9 + W(x, t) 
(Esls + ELL) ~x 4 

( A / p /  + A s P s ) ~ 2 W ( x , t )  
+ = 0  

9 ~t2 

(B2) 

where subscripts ( and s represent properties asso- 
ciated with the microcracked layer and undamaged 
layer, respectively. Since the change in the density due 
to microcracking typically is negligible and the sum of 
the microcracked layer cross-sectional area and the 
undamaged layer area is the total cross-sectional area 
of the beam, (A/p/ + AsPs)/g in Equation B2 can be 
approximated by Ap/9. 

The transverse vibration of a bar for free-free sus- 
pension requires that the bending moments and the 
shearing forces be zero at both ends of the bar 

Z~ 

u / N e u t r a l  
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ds 
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Figure B1 Schematic diagram of two-layer model composite beam 
showing the strain and stress distributions. 

[32-34], such that 

~2 w(0, t) ~3 w(0, t) 
= 0 - 0  ~x 2 ~x 3 

~ 2 W ( L ,  f) ~3 W(L ,  t) 
- 0  - 0  ~x 2 ~x 3 

for t  ~>0 

(B3) 

fo r t~>0  

(B4) 

where L = length of the specimen. The solution of 
Equation B2 under the boundary conditions given in 
Equations B3 and B4 gives [32 34] the fundamental 
transverse (flexural) vibration frequency F of the 
composite: 

F =  --2TckZ [ (ESIs +ApELI/)glI/2 _ 11.1528L 2 

x [  (EslS A9 + E/I/)g]l/2J (B5) 

The second moments of inertia Is and IL (Fig. B1) are 
given by 

Is = y2dA = - d2d + dsd 2 w (B6a) 
d 

F ] IL = yZ dA = + dZd + did 2 w (B6b) 
-d -d  e 

where w = width of specimen, d / =  thickness of 
microcracked layer and ds = thickness of undamaged 
layer. 
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When the two-layer composite beam (Fig. B1) ex- 
periences pure bending, the neutral axis of the beam 
shifts from the centroid of cross-section of the com- 
posite beam to the stiffer side. The distance from the 
neutral axis to the interface between the microcracked 
and the undamaged layers, d, can be calculated using 
the equilibrium of the axial forces generated during 
pure bending [35] (Fig. B1): 

I /  t % dA + cUdA = 0 (B7) 
d - d - d r  

where 

~f = normal stress of microcracked layer = Eey/r 

(B8a) 

~s = normal stress of undamaged layer = Esy/r  

(B8b)  

and r = radius of curvature of the neutral axis. 
Stresses ot  and Os can be expressed in terms of EE, Es, 
dr and ds such that using Equations B8a and B8b, the 
following expression for d may be obtained from 
Equation B7: 

esd  2 -- E:d 2 
d = (B9) 

2Esds + 2Etd: 

Substituting Equations B6-B9 into B5 gives the cal- 
culated fundamental transverse frequencies for a two- 
layer composite beam: 

~ ~  ~d~, 1 .Seutral 
l plane 
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x~" d. I i ..-"~. 
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Figure B2 Schema t i c  d i a g r a m  of  th ree - layer  mode l  c o m p o s i t e  b e a m  

s h o w i n g  the s t ra in  a n d  stress d i s t r ibu t ions .  

6.4391 
F - -  - -  L 2 [ [Esd~ + E / d ~ -  3(E, d2~ - E~,d2)/4(E~ds + Efd,~)]g] ~/2 

(ds + df)p J 
(B10) 

The overall Young's modulus, /~2 . . . .  for the two- 
layer composite model is thus given by 

ff'2DYN = E~I~ + Esls (Bll)  
II + Is 

For specimens microcracked on both long trans- 
verse faces (Figs lb and 2 in the main text) a three- 
layer composite model applies in which an inter- 
mediate, undamaged layer is sandwiched between 
microcracked layers 1 and 2. Again assuming perfect 
interfacial bonding between the microcracked layers 
and the undamaged layer (Fig. B2), Equation B1 for 
the three-layer case becomes 

6 4 W(x, t) 
(E/1I/1 + Esls + E/2Ii2) ~X 4_ 

( ~ - ) 6 2 W ( x ' t )  - 0 (B12) 
+ ~ t 2  

where Eel = Young's modulus of microcracked layer 
1 and E/2  = Young's modulus of microcracked layer 
2. Applying the free-free end boundary conditions 
(Equation B4) gives the fundamental transverse vibra- 
tion frequency for a three-layer composite (Fig. B2): 

11.1528 ((E/1111 + Esls + E/2I I2)g)  U2 
F - L2 Ap 

(B13) 

1 8 9 6  

I ds+d~l - d  I 
I~1 = yZdA = (d~ - d)Zdfl 

,)ds-d 

+ (ds-d,d , (B14a) 

Is = y2 dA = - d2d + ds d2 w (B14b) 
d 

I/2 = y2 dA = + d22d + dl2d 2 w 
- d - d / z  

(B14c) 

where &l,  dr2 = thickness of microcracked layer 
1 and 2, respectively, ds = thickness of undamaged 
layer and w = width of specimen. From the equilib- 
rium of the axial forces (Fig. B2), 

ta~+a/, -d fa~-a f -a cYfl dA + cysdA + OL, 2 dA = 0 
,.]ds-d -d  -d-d,.? 2 

(B15) 

where 

O !  1 

O" s 

= normal stress of microcracked layer 1 

= Erly/r  (B16a) 

= normal stress of undamaged layer 

= gsy / r  (B16b) 



cry2 = normal stress of microcracked layer 2 

= Ee2y/r (B16c) 

and r = radius of curvature of the neutral axis. The 
distance d from the neutral axis to the interface be- 
tween microcracked layer 2 and the undamaged layer 
is calculated in terms of known values: 

Ee~d2~ + 2Ee~d/xds + Esd~s -- E/zd22 
d = 

2Eel&I + 2E~ds + 2E/2de2 

(B17) 

Substituting Equations B15 and B18 into B14 allows 
one to calculate the fundamental transverse vibration 
frequency. 

The overall Young's modulus/~3~y~ of a three-layer 
composite model is 

E ' 3 ~  = E/lie1 + Esls + E/2I~2 (B18) 
I/l  + Is + 1/2 

Appendix C: The ratio of fractional 
Young's modulus change (dynamic) 
to fractional Young's modulus change 
(ROM) when the relative microcracked 
layer thickness (dz/ds) approaches zero 
For the two-layer composite model, the second mo- 
ment of inertia of the microcracked layer (Equation 13b 
in the main text) can be written as the following when 
the relative layer thickness becomes small (& ~ t): 

It ~ &d2w (C1) 

When de ~ t, then ds ~ 2d (Fig. B1 in Appendix B). 
The moment of inertia of the undamaged layer (Equa- 
tion 13a in main text) can be expressed as 

Is ~ 2d3w/3 (C2) 

where d is in turn approximately one-half of the speci- 
men thickness, t, when de ~ t. Physically, when the 
thickness of the microcracked layer becomes small, the 
specimen approaches the homogeneous, undamaged 
case where the neutral plane is located at the speci- 
men's mid-plane. Thus Equations C1 and C2 become 

Ie = d~t2w/4 (C3) 

15 = t3w/12 (C4) 

+ = wt3 
Is l/ ~ - [ 1  + 3 ( ~ ) ]  = 1~[1 + 3 ( ~ ) J  

(c5) 

Using the second moments of inertia for the two- 
layer case (Fig. l a), we express the differences between 
the undamaged elastic modulus Es and the effective 
elastic moduli for the two-layer dynamic model 
(/~2o.N) as 

3 ( d ~ / t ) ( E ~ - E t )  ( ~ )  
Es -- f2D,~ = 1 + 3(de/t) ~ 3 (Es - Ee) 

(C6) 

For two-layer ROM model f2.oM we use the relations 
vs = 1 - (de/t) and ve = de/t along with Equation 2 

to obtain 

Es - -  /~21~OM 

E~d~ d~, 
+ - (Es - G)  (C7) 

t t 

In the limit that the ratio dr --+ O, the relative sensi- 
tivity of the dynamic model and the ROM models (for 
the two-layer case) is given by 

lira (Es--/~2D'~- t 
(ae/O-+o Es /~2RoM / 

= lim ( 3 ( d t / t ) ( E s - G ) ~  
(,,e/o-o ~ 2 Ee)/= 3 (c8) 

According to Equation C8, in the limit of a vanish- 
ingly small relative thickness (de/t) for the micro- 
cracked layer, the dynamic modulus is three times 
more sensitive than the ROM modulus to the relative 
changes in elastic modulus induced by microcracking. 
Physically, Equation C8 reflects the fact that the dy- 
namic model is a beam vibration model (Appendix B) 
in which the elastic modulus is related to the resonant 
frequency of the beam, while in contrast the ROM 
model (Appendix A) is based upon a specimen loaded 
in uniaxial tension. For beam vibration, the maximum 
tensile and compressive stresses appear at the outer 
fibre of the beam (Appendix B, and especially Figs B1 
and B2), while in the ROM model the uniaxial tension 
is constant over the cross-section of the beam. In the 
limit of a very thin microcracked surface layer, the 
microcracks are subject to the highest stresses present 
in the beam, while in the ROM model the microcracks 
are subject to the average stress over the specimen 
cross-section. The asymptotic limit represented by 
Equation C8 may be seen in the R axis intercept in 
Fig. 10a (main text), where R refers to the ratio of the 
fractional modulus changes for the dynamic and 
ROM modulus models. 

For the three-layer composite model, when d~ ~ t 
and dee "~ t then the second moments of inertia 
(Equations 30-32 in main text) become (upon drop- 
ping second- and third-order terms in dr and de2) 

If1 = (ds - d )  2 d~lW (C9) 

Is = (d--f3 - d 2 d + d s d 2 ) w  (cm) 

I~: 2 = dl2 d 2 w  (C11) 

ds ~ t ~ 2d when de1 -~ 0 and d~2 --* 0. Thus 
Equations C9 CI 1 become 

Ifq = t2delw/4 = 3Isde l / t  (C12) 

Is = t3w/12  (C13) 

!f2 = t2d~2 we4 = 3 Isd~2/t (C14) 

so that 

(C15) 

Thus, from Equations C12-C15 and Equation 29 of 
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the main text 

E, - ff.3D~ = - 3(dla/t)E<l + 3(dt l / t )E,  + 3(d<2/t)E, - 3(d<z/t)E<2 
3(d<l/t) + 1 + 3(d<2/t) 

/ d [ l \  3 ( ~ ) E s  3 ( ~ 2 ) E , 2  . - 3 ~ ) E < ,  + 3 ( ~ ) E , +  - 

From Equation 3 of the main text we obtain 

d,~l d/1 -dr E d~2 
Es . . . .  f 3 . o .  ~ -  e<2 t E < ~ + 5  - E ~ +  t s 

(C17) 

Thus, in the limit the expression for the three-layer 

lim (E~--/~3I'Y~'] = d<1(d21 + 3dZ2)Al 

d~--o Es J t 3 

or  

lim ( E , - E 3 o y ~  
d~o ', E~ / 

(C16) 

where d<l = thickness of microcracked layer 1, 
dl2 = thickness of microcracked layer 2, d, = thick- 
ness of undamaged layer, t = d<l + d, + dr2 (specimen 
thickness) and R1 = d<l/d,, R 2  = dt2/d,. If R1 ~ oo 
or  R 2 ---+ oo or  equivalently if either d<l --, t or  d<2 ---+ t 
(Fig. D1), then for the dynamic three-layer model 

+ d<2(d22 + 3d<2~)A2 

+ [(d- t2)3 + (d21d<2) t3 Jl A1 - -  3\ t3 j]A2 (D2a> 

= (v 3 + 3 V 2 V l ) A ,  + (v 3 + 3v2v2)A2 

= A 2 { I ( d < ' l ~ 3  3 ( d [ l ~ ]  At  q_ [ I  _]_ 3 ( d < i ~  2 (D2b) 

case becomes 

lim (Es - - /~3D,~N)=  lim [ E ~ - / T 3 ~ , ~ (  Es ) 1  

,. / / 3 [ -  (d<l/t)E<l + (d<l/t)Es + (d<2/t)Es - (d<2/t)E<2] ) 
u m  | . . . . . . . . . .  

(d?/t)~O\ -- (d<l/t)E<l + (d<l/t)Es + (d~2/t)Es (d<2/t)E<2 
= 3 ( c 1 8 )  

Thus for both the two-layer model (Equation C8) and 
the three-layer one (Equation C18), the fractional 
overall Young's modulus change (dynamic beam vi- 
bration theory) is three times larger than the fractional 
Young's modulus change (rule of mixtures) when the 
layer thickness is very thin compared with the un- 
damaged layer thickness (d<l ~ 0 and d/2 ----r 0). 

(see Fig. D2) where Vl,/)2 = volume fraction of micro- 
cracked layer 1 and 2, respectively, and d<l, 
d<2 = thickness of microcracked layer 1 and 2, re- 
spectively. However, as ds ~ 0, vl + v2 = 1 or 
v2 = 1 - v,. Thus Equation D2 may be rewritten in 
terms of volume fraction v~ only such that 

lim / \ [Es -E3~  =(4v~ - 6v 2 + 3vl)A~ + ( - 4 v  3 + 6v 2 - 3v~ + 1)A2 (D3) 
~ o  \ Es / 

= 2(A1 -- A2) + A2 

where 2 = 4v~ - 6v 2 + 3v~. In the special case that 
d<l = d<2, then vl = 0.5 and 2 = 0.5, and thus 

A p p e n d i x  D: L i m i t i n g  va lues  
of  (Es - /:3DyN)/Es and (Es - r:3Roa)/Es 
fo r  t h e  case t h a t  t h e  m i c r o c r a c k  
v o l u m e  d o m i n a t e s  t h e  s p e c i m e n  v o l u m e  
(ds -~ 0) 
Using  A 1 = f l  Grl N(1 and A 2 =f2G<2N(2, Equation 
41b of the main text may be rewritten as 

Es - -  /~3DYN 

ES 

( E s - _ E 3 ~ , ~ ' ~  _ A1 + A2 (D4) 
lim 
d~O \ E~ J 2 

For the ROM  three-layer model, when ds ~ 0 then 

E~ - -  E3ROM RIA1 R2A2 - + 
Es R1 + R2 + 1 Rt + R2 + 1 

= vl(A1 -- A2) + A2. (D5) 

RI[R~ + 3(R2 + 1F]A1 + R~[R 2 + 3(R1 + 1)=3A2 
(R1 + R2 + 1) 3 

dtl[dZt -}7 3(d/2 + ds)Z]A1 + dz2[d22 -k- 3(dll + ds)2]A2 
t 3 

(D1) 

1 8 9 8  



]- 

+ 
~z 

i 

/ " L 
- -  ! 

x 
[ ',- 

\ L_ 
"- , ~ ,_ ~ ~ ) 

- ~2 , ' ,>  ~ "  k ~ '  ' \ 1  
"~., _ f / ~ ~ 7 \ "" \ " l  \ . .  -~ -/ 

\ 
ds -----~ 0 

M_ \ 

Figure D1 Schematic diagram of limiting case where the two micro- 
cracked layers dominate the specimen volume (R~ ---, oo and 
R 2 ---* 00) .  

I 

2 

^ 1 1 ^ 2  d?l  /dZ2 

Figure D2 The relationship between d/1/d/2, A1/A2 and the limit of 
fractional Young's modulus  change when both Rz and R2 go to 
infinity for three-layer model (for the particular case that 
d/2 = 0.1 x bar thickness, A2 = 0.1). 

If vl = 0.5 (that is for ds ~ 0 and dr1 = d~2) then 

l i m ( E ~ - E 3 , o M ) _  A1 + A 2  (D6) 
d~ -~ o \ 2 

Thus the ROM result for the limit vl = 0.5 (Equa- 
tion D6) is the same as the result obtained for thr 
dynamic model when vt = 0.5 (Equation D4). 

The ratio of the relative Young's modulus changes 
for the dynamic and ROM models can easily be ob- 
tained from the ratio of Equation D3 and D5 such 
that 

l i m ( E ~ - E a D , ~ N )  = 2 ( A , - A 2 )  + A 2  (D7) 
a,~O E 3 R o M /  vl(A1 - -  m2)  + Az 

In Equation D7, if A1 = A2 (where A1 and A2 measure 
the damage in microcracked layers 1 and 2) then for all 
values of vl (or v2) 

lim ( E s - -  EZD~N) = 1 (D8) 
ds--* 0 ~-s E3ROM / 

Physically, for a vanishingly small undamaged layer 
(ds --* 0), the condition that A1 = A2 implies that the 
effective damage in the two microcracked layers is 

identical, and thus the damage state approaches that 
of a uniformly microcracked body. 

Now consider the general case that A1 is not equal 
to A 2. If Vl ~ 1 (or equivalently if v z  ~ 1), or if 
vl = v2 = 0.5, then the limit given by Equat ion  D7  
also approaches  unity. 
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